
Jrsd v. 2.8 manual

1 (Long) Introduction
Would you write a java program like this ? :
<java-source-program>
 <java-class-file name="FirstApplet.java">
 <import module="java.applet.*"/>
 <import module="java.awt.*"/>
 <class name="FirstApplet" visibility="public"
 line="5" col="0" end-line="11" end-col="0"
comment="// do not forget this import statement!// Or this one for the graphics!">
 <superclass name="Applet"/>
 <method name="paint" visibility="public"
 id="FirstApplet:mth-15" line="8" col="2" end-line="10" end-col="2"
comment="// this method displays the applet.// the Graphics class is how you do all
the drawing in Java">
 <type name="void" primitive="true"/>
 <formal-arguments>
 <formal-argument name="g" id="FirstApplet:frm-13">
 <type name="Graphics"/>
 </formal-argument>
 </formal-arguments>
 <block line="8" col="32" end-line="10" end-col="2" comment="// do not forget
this import statement!// Or this one for the graphics!// this method displays the
applet.// the Graphics class is how you do all the drawing in Java">
 <send message="drawString">
 <target>
 <var-ref name="g" idref="FirstApplet:frm-13"/>
 </target>
 <arguments>
 <literal-string value="FirstApplet"/>
 <literal-number kind="integer" value="25"/>
 <literal-number kind="integer" value="50"/>
 </arguments>
 </send>
 </block>
 </method>
 </class>
 </java-class-file>
</java-source-program>

instead of :
import java.applet.*; // do not forget this import statement!
import java.awt.*; // Or this one for the graphics!

public class FirstApplet extends Applet {
 // this method displays the applet.
 // the Graphics class is how you do all the drawing in Java
 public void paint(Graphics g) {
 g.drawString("FirstApplet", 25, 50);
 }
}

?

(this example was “hijacked” from javaML, a project whose purpose is to make a java representation
more suited for automated, machine processing)

Writing mappings for various ORMs just feels like this for me. Wouldn't it be nice to
start with the SQL's data definition of the table, and to add mapping clauses
afterwards, side by side with the SQL ? This is the goal of jrsd : you start with the
SQL ddl statements, and you add constructs to indicate how SimpleORM should map

1/29

http://www.badros.com/greg/JavaML/

this to java code. Jrsd stands for “Java Relational Simpleorm Descriptors”, because
the statements you write are “descriptors” that glue java and the relational database
part, using the well-thought simpleorm API. The jrsd precompiler will generates the
SQL files and the java files for you, triggered by ant, or directly, by calling jrsd on the
command line. Simpleorm can also generate SQL from its declarations, but you don't
see the SQL code except when it has been executed, which can be annoying, for
example if you work with database administrators who review your SQL before they
execute it at the production database (actually simpleorm can generated some SQL
now using methods like SDriver.createTableSQL() for example, but it is still
cumbersome to control the SQL in my opinion). Jrsd gives you lots of places to add
your own SQL code, and thus to better control the generated SQL. The generated
SQL is just a bunch of files, so this is easy to send and review. This is more in the
“don't be afraid of SQL” approach, that we like in simpleorm. The goal is the same
that simpleorm : one place to make modifications. Of course if you use jrsd for SQL
generation, don't use simpleorm's DDL methods !

This project is complementary to Simpleorm, but is not meant to be included inside
the simpleorm project, because of a few differences in the approach :

• In simpleorm, columns are declared inside the java code; jrsd keeps separated
files that generate the java code. Jrsd should be used only for people that
prefer to maintain a separate file, this is not the case for everyone.

• The simpleorm library is small, and this small size is an argument for its
adoption in many cases. Jrsd adds another 80 K for an extra comfort not
needed by everyone. The approach in jrsd is to have simpleorm, not
necessarily smallorm.

• Jrsd is not as well-tested as simpleorm, it is still beta code (although under
Oracle I have now more than 3 years of experience).

• Jrsd adds extra utility classes to make some particular uses more convenient
(use of BLOBs/CLOBs, value transfer objects, ...). This is a bit of a “code
bloat” and is not in the philosophy of simpleorm.

• Jrsd uses log4j, which adds another 350 K of jars to distribute.

2 Why use jrsd + simpleorm ?
The advantages in using jrsd are :

• You start with an SQL file (well, sort of); not an XML file, not a java file. For
an existing table, you can start from a reverse-engineered sql file, this is quite
fast. Also the jrsd files are quite compact and self-documenting, they are more
convenient to read than the java files.

• Automatic generation of SQL files that are like hand-made SQL files (hand-
written parts can be added at most places)

• Automatic generation of the java classes for the orm, with all the wanted
getters and setters; this adds more comfort when using IDEs (Eclipse,
Netbeans, …) that have code completion feature, and makes the business code
that uses those classes more concise and clear. Also lots of libraries ask for

2/29

this (struts 2, template libraries, …).

• Transport mechanism which simplifies transfers between a javabean and a
simpleorm record. The use of plain old java objects removes the dependence
to simpleorm's datasets, which adds more flexibility. Datasets are more safe,
but this safety has a price. Transport objects makes the code simpler to write
for the easy cases.

• All parts are optional, simpleorm and/or direct jdbc can always be used when
wanted, so using jrsd is not blocking. Jrsd just gives alternatives, it is of course
not meant as a replacement for simpleorm methods. The user always has the
choice, jrsd just gives more to choose from.

• Small utility classes that add more capabilities to simpleorm/jdbc : sql
execution from resource files, value objects as an alternative to the
SrecordInstance, classes to help with oracle, with blobs, with templating
frameworks, with log4j logging, ...

• SQL file version/checksum mechanism, that prevents an accidental change in
the database model. After 24 hours, to change something in the database (a
column name, type, …) you must either delete the old sql file manually, or
declare a new version of the table. This avoids accidental unwanted changes,
because databases are not as easily changed (and safe to change !) as
codebases.

• All the extra elements are there to ultimately make your business code more
readable. You write extra code outside the business methods (factory methods
inside your SrecordInstance extension classes, DbOps methods, transport
object classes etc.) so that your business code gets very simple to read, follow
and debug.

2.1 History of jrsd
When I started to use simpleorm around 2005, I was not very satisfied with the SQL
code generation of simpleorm (and our database administrator even less...). I started to
write the SQL separately, and then the orm classes. After a while, I used a system
with XML files and stylesheets. This automated things much farther, but the whole
thing was not very readable. After getting tired of XML file maintenance, I realized
that the relevant part was in the SQL files, and played with a small ANTLR grammar.
This worked really well, and I added features and constructs as soon as I needed them
in a project. When simpleorm was released with the improved dataset model, I had to
rewrite much of the code and the grammar. Now after some years of use, I am
reasonably satisfied with the tool, and I thought it was time to give something back to
the simpleorm community who brought us this very useful orm tool and library. The
name “jrsd” is not very nice nor self-speaking, but it has one advantage : is is
uniquely referenced by web search engines.

3 For the impatient
Go to the directory where you have unpacked jrsd, and type
ant demo

3/29

This will build a demo in “dist-demo”, and launch a simple demo application, that
uses the h2 java database, will be run. The application lets you describe your audio
CDs, and keeps track of the CDs you have lended to your friends. This is just for
demonstration purposes, you should not use this application for real.

Here is a screenshot of the “Lending CDs” application :

You can have a look at the “dist-demo\jrsd” dir for the jrsd files, and at the “dist-
demo\src\sql” dir for the generated sql files. The generated simpleorm java source
files have been generated in the “dist-demo\src\org\hmn\jrsd\demo\orm” dir.

For a quick overview of what is generated and how, I have put a simple descriptor for
a PATIENT table. A patient has a unique identifier assigned by an hospital, and the
usual well known fields for first name, last name, birth date. Other fields (sex, usual
name, etc.) have been left out for clarity. Two files will be generated for the dist-
demo\jrsd\PATIENT.java :

• dist-demo\src\org\hmn\jrsd\demo\orm\PATIENT.java
• dist-demo\src\sql\table-PATIENT_v1_2392001264.sql

We will start with these files to get a quick glance of what is declared and generated.

4 A simple .jrsd file
The file PATIENT.jrsd found in demo/jrsd/PATIENT.jrsd :
jrsd 2;

/* PATIENT */
table PATIENT version 1 :
 simpleorm "org.hmn.jrsd.demo.orm.PATIENT" as s
(
 /* Unique id of the patient */
 PID varchar(16) : s;
 /* Last name */
 LAST_NAME VARCHAR(64) : s;
 /* First name */
 FIRST_NAME VARCHAR(64) : s;
 /* Date of birth */
 BIRTH_DATE TIMESTAMP : s;
 primary key (PID);
)
;

5 The generated .java and .sql files
The generated SQL file, table-PATIENT_v1_2392001264.sql :

4/29

file://HMN-PORTHK/hk/jb/jrsd2/demo/jrsd/PATIENT.jrsd

/* PATIENT */
CREATE TABLE PATIENT /* version 1 */ (
 /* Unique id of the patient */
 PID varchar(16),
 /* Last name */
 LAST_NAME varchar(64),
 /* First name */
 FIRST_NAME varchar(64),
 /* Date of birth */
 BIRTH_DATE timestamp,
 PRIMARY KEY (PID)
)
;

The generated java file, org/hmn/jrsd/demo/orm/PATIENT.java :
/* simpleorm class org.hmn.jrsd.demo.orm.PATIENT */
/**
* WARNING - This class was automatically generated by the jrsd tool. Any *
* modifications made to this source will be overwritten the next time that *
* jrsd is run. Modify the .jrsd file instead. *
**/
package org.hmn.jrsd.demo.orm;
import java.math.BigDecimal;
import java.sql.Timestamp;
import java.sql.Time;
import java.sql.Blob;
import simpleorm.dataset.*; //because this file is generated, we can not know in
advance what is used or not

import org.hmn.jrsd.rt.TransportFieldMapping;
import org.hmn.jrsd.rt.TransportMappings;
import org.hmn.jrsd.rt.FieldList;

public class PATIENT
extends SRecordInstance
{
 /** indicates the jrsd table version number */
 public int getSqlSourceVersion() { return 1; }

 public static final SRecordMeta<org.hmn.jrsd.demo.orm.PATIENT> meta =
 new
SRecordMeta<org.hmn.jrsd.demo.orm.PATIENT>(org.hmn.jrsd.demo.orm.PATIENT.class,
"PATIENT")
 ;

 /** Unique id of the patient */
 static final public SFieldString PID =
 new SFieldString(meta, "PID" , 16 , SFieldFlags.SPRIMARY_KEY)

 ;
 /** Last name */
 static final public SFieldString LAST_NAME =
 new SFieldString(meta, "LAST_NAME" , 64)

 ;
 /** First name */
 static final public SFieldString FIRST_NAME =
 new SFieldString(meta, "FIRST_NAME" , 64)

 ;
 /** Date of birth */
 static final public SFieldTimestamp BIRTH_DATE =
 new SFieldTimestamp(meta, "BIRTH_DATE")

 ;

 public String getPID() {
 return (String)getString(PID);

5/29

 }

 public void setPID(String v) {
 setString(PID, v);
 }

 public String getLAST_NAME() {
 return (String)getString(LAST_NAME);
 }

 public void setLAST_NAME(String v) {
 setString(LAST_NAME, v);
 }

 public String getFIRST_NAME() {
 return (String)getString(FIRST_NAME);
 }

 public void setFIRST_NAME(String v) {
 setString(FIRST_NAME, v);
 }

 public Timestamp getBIRTH_DATE() {
 return (Timestamp)getTimestamp(BIRTH_DATE);
 }

 public void setBIRTH_DATE(Timestamp v) {
 setTimestamp(BIRTH_DATE, v);
 }

 @Override
 public SRecordMeta<org.hmn.jrsd.demo.orm.PATIENT> getMeta() { return meta; }

}

The command that was used for the generation :

bin/jrsd -srcroot src -sqlroot sql jrsd/PATIENT.jrsd

6 Format of a .jrsd file

6.1 Preamble
Every jrsd file starts with the string “jrsd” followed by a version number. Currently
the version number to use is “2”.

6.2 Statements and semicolons
Most jrsd statements end with a semicolon. This may be confusing at first because in
SQL column declarations are separated with commas. Commas are used to separate
multiple statements in the mapping part.

6.3 Sql / Java duality
Most declarations have an sql part and a java part. The sql part comes first, the java
part is optional and comes afterwards. The java and sql parts are separated by a colon
(“:”). SQL Tables are mapped to simpleorm SrecordInstance(s), and SQL Columns

6/29

are mapped to SFields of record instances. If an SQL element is not mapped to a java
element, it will only appear in the SQL. In the “java” part, mustiple statements can
occur, they must be separated by commas.

6.4 Aliases
Most elements are referenced by an alias; when you declare them, you must add “as
<alias_name>”, this alias is then used in further declarations.

Example :
simpleorm "org.hmn.jrsd.demo.orm.PATIENT" as s

The alias “s” will be used to reference the simpleorm SrecordInstance class PATIENT

6.5 Default names
When no name is given in the java declaration part, the name is generated using the
column name. This is usually sufficient, and makes the java part very small (just the
alias of the simpleorm class most of the time). Generated names will have the same
case than the column name; this can generate warnings in java but otherwise it is
mostly harmless. Ex :
 PID varchar(16) : s;
Generated field :
 static final public SFieldString PID =
 new SFieldString(meta, "PID" , 16 , SfieldFlags.SPRIMARY_KEY)

You can force the case of the generated fields with some options (see below) if this is
really necessary.

6.6 Explicit names
If the names in the table and the record don't match (not recommended), you can
declare the name explicitly by just using a dot and the identifier. Ex :
 PID varchar(16) : s.patientIdentifier;
Generated field :
 static final public SFieldString patientIdentifier =
 new SFieldString(meta, "PID" , 16 , SfieldFlags.SPRIMARY_KEY)

6.7 Table declaration
The format of the table declaration is :
table <tablename> version nn [: <javaelements>] (
);

The java elements can be :

• Declaration of a simpleorm SrecordInstance class to create :
simpleorm “my.class.Name” as <aliasName>

7/29

• Declaration of a transport class to map to :
transport “my.class.Name” as <aliasName>

Element declarations are separated by commas.

6.8 Column declaration
Columns are declarated similarly to SQL : the name, followed by the type. There are
less types directly supported than in SQL (what SQL, anyway ?). Special constructs
allow to force arbitrary SQL text, and you can map to a user-defined SField so all
cases can be covered.

6.8.1 Primary key(s)
One or more primary keys must be declared in the SQL part, and also in the java part.

For the sql part, you must use the special statement PRIMARY KEY (…) to declare
one or more primary keys. In the java part, you must add the #SPRIMARY_KEY
directive (in upppercase). You can add arbitrary literal SQL if your SQL declares
primary keys differently (although I didn't see any need to for now). In the future, the
PRIMARY KEY should be supported in the column declaration, but for the moment,
it isn't.

6.8.2 declaring references
To declare simpleorm references, there is a special construct that uses the “ref”
keyword. The syntax to declare it is :
<alias>.<ref_field_name> ref <name_of_referenced_record>
For example, in the demo, there is a FRIENDS_ID column that references a
FRIENDS record. It is declared like this :
 FRIENDS_ID integer : s, s.ref_FRIENDS ref FRIENDS;

In the generated org/hmn/jrsd/demo/orm/CDS_gen.java file, two java static SField
fields will be generated :
 /** If LENDED_F = '1', ID of the friend to whom the CD has been lended. */
 static final public SFieldInteger FRIENDS_ID =
 new SFieldInteger(meta, "FRIENDS_ID")
 ;
 /** Reference field using foreign key 'ref_FRIENDS' to record 'FRIENDS' */
 static final public SFieldReference<FRIENDS> ref_FRIENDS =
 new SFieldReference<FRIENDS>(meta, FRIENDS.meta, "ref_FRIENDS", FRIENDS_ID)
 ;

6.9 ”transport” objects
Some classes are just plain old java objects (aka javabeans) whose only purpose is to
convey the data from one part of a machine/application to another place (another
machine, another database, etc.). Such objects are often called “value objects” or
“value transfer objects” because they just hold values, they don't have behaviour. I

8/29

prefer to call them “transport objects”, because transporting data is the very essence of
their existence. While simpleorm has elegant mechanisms to avoid such objects, not
all applications support the simpleorm API, so there still is a need to use transport
objects (this was especially true with previous versions of simpleorm). In jrsd, if you
declare a transport object, you can declare the fields that have to be filled with the
record's data.

When mapping to a simpleorm record, you can declare additional elements to map to,
as a list enclosed in parentheses. Here in the following example, a correspondence
will be generated between the field login of s and the field login of t :
 transport "org.hmn.gesmat.login.LoginForm" as t,
 simpleorm "org.hmn.gesmat.orm.GM_USER"
(
 login varchar(32) : s(t);

If the name used in t is different, just add it explicitly in the declaration using the dot
notation :
 login varchar(32) : s(t.myLogin);

You can use more than one transport object, here is a more elaborate example :
 transport "org.hmn.gesmat.login.LoginForm" as t,
 transport "org.hmn.gesmat.GmUser" as u,
 simpleorm "org.hmn.gesmat.orm.GM_USER"
 extends abstract "org.hmn.gesmat.orm.GM_USER_gen"
 as s
(
 /* unique key, generated by the gm_user_id_seq sequence */
 gm_user_id integer : s #usesequencegen;
 /* user */
 //login is mapped to 2 different transport objects
 login varchar(32) : s(t.login, u.userLogin);

<<TODO describe readFrom and writeTo>>

6.10 Comments
Comments that are enclosed between “/*” and “*/” are recorded, and used in the
generated files (both java and sql). You can also generate the code for Oracle that will
add the corresponding column comments. You can only have one comment of this
sort per table/column definition.

The comments that start with “//” are simple comments and are completely ignored.

7 The generated files

7.1 SQL files
Every jrsd table declaration has a version number, and a checksum number that I call
the “sql checksum” : every name and every type (varchar, integer, etc.) participate in
the calculation of this checksup (something similar to the serialVersionUID

9/29

used in java serialization). The name of a generated SQL file for a table includes the
version number AND the digest in its file name. If a file exists that has the same
prefix (name + version) but a different digest (let's call it file “A”), the age of file “A”
is checked. If file A's age is less than 24 hours, it is deleted, and the new file is
written. If file A is older than 24 hours, and , the target file has a different digest, this
is considered an error and an exception is thrown. This mechanism is there to protect
the database from unattended model changes. Therefore, if you add or remove a
column in your jrsd descriptor later, you must either increment the table's version
number, or delete manually the previous SQL file. This naming scheme is
cumbersome, but has saved me from numerous problems when maintaining database
code.

7.2 java files
For each “simpleorm <class_name>” statement, a SrecordInstance class is generated.
For each column that has been mapped to the SrecordInstance, a corresponding field
is generated, with the corresponding getters and setters. This makes the work with
IDEs (Eclipse, Netbeans, etc.) much easier. You can add literal code to the generated
file, or you can extend it to add further methods. Adding literal code is only necessary
to change things in the static fields. For everything else, extending is fine. By
convention, I name generated file by appending a “_gen” suffix; the class that extends
them has the name of the table. See the CDS_gen and CD classes in the demo for an
example.

7.3 Xml files
Sarting with v.2.8 there is the possibility of producing an xml file for further
automated processing. There is an example “to-liquibase.xsl” stylesheet to
demonstrate this transformation from jrsd xml to the liquibase xml format. The export
is rather crude, and for the moment some attributes will certainly need to be
checked/updated. To enable xml output use the command line switch -emitxml, or the
ant jrsd task attribute emitxml=”true”. The base dir for the generated xml files
defaults to the current user directory; it can be changed with the -xmlroot <path>
command line argument, or the xmldir=”<path>” task attribute.

8 Installation
The distribution is composed of 2 archives : jrsd-2.8.jar and jrsd-2.8-rt.jar

The “-rt” jar is the runtime path and will be used at runtime. It the only jar that has to
be present in the final project. The size of the runtime is approximatively 80 K, but it
uses log4j, which is around 350 K.

The other jar is the precompiler, and is the one that generates the source files from the
specification file.

These archive have 2 dependencies : antlr-2_7_6.jar and log4j-1.2.8.jar

10/29

9 Usage from the command line
jrsd -srcroot src -sqlroot sql mapping-file.jrsd [mapping-file2.jrsd ...]

10 The .jrsd types
The booleanchar type

If you declare a field of booleanchar type, it will be a field represented as a CHAR
column of width 1, with the first char meaning true, the other one meaning false.

Example of declaration :
ALLOWED BOOLEANCHAR("1", "0") : s;

Here the generated sql will be :
ALLOWED char(1),

and the generated java will be :
 static final public SFieldBooleanChar ALLOWED =
 new SFieldBooleanChar(meta, "ALLOWED", "1", "0");
 public Boolean getALLOWED() {
 return (Boolean)getObject(ALLOWED);
 }

 public void setALLOWED(Boolean v) {
 setObject(ALLOWED, v);
 }

11 More advanced .jrsd

11.1 ANTLR grammar
There are lots of options and possibilities, not all are documented yet. For the very
detailed syntax, the ANTLR grammar, in g/jrsd.g is the reference. ANTLR
grammars are not too hard to read.

11.2 Quoting of names
The default is to enclose column and table names in quotes only when “necessary”.
The rule is : no quoting is necessary if the name starts with a letter and is followed by
nothing, letters, digits or underscores. If the special directive #quote is used in the
SQL part of a table definition, quoting is forced for names. If the special directive
#unquote is used in the SQL part of a table definition, quoting is disabled for all the
names.

11/29

11.3 Parameterized types : boolean(...)
booleanchar("1", "0")

11.4 Extends : Using the generated class as a superclass
<TODO>

11.5 Extends abstract
<TODO>

11.6 Explicit simpleorm field type declaration
<TODO>

11.7 Double colon (“::”) usage
Used when the constructed object is assignable to a variable of another class, but is
not the same. Example :
DESCR varchar(32) : s TruncatedString::String;
Will generate :
static final public SFieldString DESCR =
 new SFieldTruncatedString(meta, "DESCR" , 32)
The simpleorm.dataset.SFieldTruncatedString class is part of jrsd2 and extends
simpleorm.dataset.SFieldString.

11.8 field prefixes
When you declare a column, everything gets the same name by default : the column's
name, the simpleorm field, and this name is used for the setter and the getter. Some
will like this approach (I do), others won't. And in some rare cases, this may cause
trouble. For example when you have a field “name”, jrsd will generate the field
“SfieldString name”, and the getter “String getName()”. If you look for the “name”
using reflexion, you may find a property named “name”, and a getter “getName()” for
the property “name”. To avoid ambiguities like this and as a matter of taste, there is a
directive introduced in jrsd 2.6 that specifies a prefix to add to all fields. This
directive, “field prefix”, must appear at the start of the spec. For example if you use
the directive :
field prefix “fld”;
Every generated field declared in the spec will start with the prefix “fld”.

11.9 declaring a reference

Use the keyword « ref », followed by the table that is referenced. There is a limitation
when a reference is declared in this way : the name of the column is also used for the

12/29

field name in the produced code.

Example :

table MASTER_TABLE version 1 :
 simpleorm "org.hmn.jrsd.test.MASTER_TABLE" as s
(
 MASTER_TABLE_ID integer : s;
 NAME varchar(30) : s;
 PRIMARY KEY(MASTER_TABLE_ID);
);

table DETAIL_TABLE version 1 :
 simpleorm "org.hmn.jrsd.test.DETAIL_TABLE" as s
(
 DETAIL_TABLE_ID integer : s;
 DESCR varchar(30) : s;
 MASTER_TABLE_ID integer : s, s.ref_MASTER_TABLE ref MASTER_TABLE;
 PRIMARY KEY(DETAIL_TABLE_ID);
);

When declaring reference fields, you must also declare the field itself, or Simpleorm
will complain at runtime that it does not find the referenced foreign key.

Wrong :
 MED_SERV_OU_ID VARCHAR(32) : s.ref_MED_SERV_OU ref MED_SERV_OU;

Right :
 MED_SERV_OU_ID VARCHAR(32) : s, s.ref_MED_SERV_OU ref MED_SERV_OU;

Two fields will be generated :
 /** ID of the service O.U. this O.U. is attached to */
 static final public SFieldString MED_SERV_OU_ID =
 new SFieldString(meta, "MED_SERV_OU_ID" , 32)
 ;
 /** ID of the service O.U. this O.U. is attached to */
 //
 static final public SFieldReference<MED_SERV_OU> ref_MED_SERV_OU =
 new SFieldReference<MED_SERV_OU>(meta, MED_SERV_OU.meta, "ref_MED_SERV_OU",
MED_SERV_OU_ID)
 ;

Note here that the field name is not really the referenced field, but the name of the
field itself. This is on purpose because I wanted to be able to use the field several
times to address several tables. If you don't want this behavior, declare the field
manually

Tweaking the generated types
When you declare a field for Simpleorm, the field type is inferred from the declared
type in the SQL part. This can be insufficient, in very rare cases. One example is the
current use of Blob(s) in Simpleorm, which still needs some improvement. The syntax
of jrsd allows you to declare an extra type to use for the simpleorm field, and even a
different type that will be used for the data that will be passed to and from the
accessors.

For an example, see the part that decribes Blob usage.

13/29

11.10 Adding literal code for sql
The column is declared with a name and a type, and this serves to generate the SQL
DDL statement to declare that column. However in some cases this is not satisfactory,
because the SQL must be very specific. For this special case there is a syntax to
declare literally the SQL code that will be used. The sql code is declared inside curly
brackets, and is copied as it is in the SQL file (no other text is generated for that
column). Here is an example for MySql :
MOD_DT TIMESTAMP {MOD_DT DATETIME} : s ;
This declares a column MOD_DT of type TIMESTAMP. For this column, a
corresponding SfieldTimestamp will be generated in the java code, however in
SQL, if there was no literal code, a column of type TIMESTAMP would be
generated, and unfortunately a column of type TIMESTAMP sets its value to the
current date and time if you insert a null value into it, and this is not what we expect
(most of the time). The type that corresponds better is DATETIME, thus the
declaration inside curly brackets : {MOD_DT DATETIME} which gives the correct
statement for the SQL generation.

Similarly, there are other places where you can add literal SQL : at the start of the
table's declaration (after the version number), before and after the end of the table's
declaration (the closing parenthesis), you can add literal code that will be placed at the
end of the table's SQL, before or after the closing parenthesis. This gives you a great
control, ant is useful to add special clauses to the table's declaration, or to add extra
index clauses, for example. To see all the possibilities, consult the ANTLR grammar.

11.11 Adding literal code for java
Using the same mechanism than for literal sql, you can add java code that will get
copied literally to the generated java code. The code is inserted after the “meta” field
declaration, this allows the referencing of the fields that are declared before the
“meta” field. Inside the block, only two escape chars are possible : a “}” must be
replaced by a “\}”, and a “\” must be replaced by a “\\”. See the demo's PAT_VALUE
descriptor for an example.

11.12 Column types and simpleorm field types
Here is a correspondence between the column type that you declare (case-insensitive),
and the Simpleorm field type that is generated :

 PRIMITIVE_BOOLEANBIT BooleanBit

 PRIMITIVE_BOOLEANCHAR BooleanChar

 INT Integer

 PRIMITIVE_LONG Long

14/29

 PRIMITIVE_DOUBLE Double

 BOOLEANBIT BooleanBit

 BOOLEANCHAR BooleanChar

 INTEGER Integer

 LONG Long

 DOUBLE Double

 VARCHAR String

 CHAR String

 NUMBER Long

 NUMBER(n) BigDecimal

 BIGDECIMAL BigDecimal

 DATE Date

 TIMESTAMP Timestamp

 TIME Time

 BYTES Bytes

 BLOB Blob

 CLOB Clob

 OTHER(XXX) XXX

The difference between LONG and PRIMITIVE_LONG is that for LONG, accessors
for “Long” (the Object type) will be generated, whereas for PRIMITIVE_LONG,
accessors for “long” (the primitive type, notice the lowercase “L”) will be generated.
This is the same for other PRIMITIVE_xxx types.

11.13 Using directives
Directives are case-sensitive. simpleorm directives are uppercase, non-simpleorm
directives are lowercase

simpleorm directives :
(See simpleorm doc for more information)
#SPRIMARY_KEY
#SMANDATORY

15/29

#SNOT_OPTIMISTIC_LOCKED
#SDESCRIPTIVE,
#SUNQUERIED

“Non-simpleorm” directives (they don't correspond to a simpleorm constant, but
generate code for simpleorm, or control code generation otherwise)

#usesequencegen
Declare in simpleorm the use of a sequence to generate new ids. The
name of the sequence is fixed; it is the name of the field plus « _GEN ». Example of
generated java code for the field that corresponds to the column « FRIEND_ID » :
.setGeneratorMode(SGeneratorMode.SSEQUENCE, "FRIEND_ID_SEQ")

#useinsertgen
Declare in simpleorm the use of the « insert » generator mode (used for MySql
mainly, and some others)

#useselectmaxgen
Declare in simpleorm the use of the « selectMax » generator mode, that uses select
max(colname) + 1 to get new ids.

#noaccessors
Don't generate getters & setters for this column.

11.14 Declaring key generators
When you declare a primary key column, the column's value can be automatically
generated by the database or by simpleorm (see simpleorm doc for more information).

The simplest usage is to declare an integer field, for which automatic key generation
is now supported by most databases, and to use the most appropriate directive
(#usesequencegen for Oracle, #useinsertgen for MySql, #useselectmaxgen for others,
mostly). Note that when using #usesequencegen, the name of the sequence is fixed,
and is the name of the field followed by _GEN. This is sufficient in most cases;
however if a specific name is really needed, the name of the sequence can be changed
using the simpleorm API inside a static initialization block, declared inside the literal
java code part. Ex :
 simpleorm "test.MYTABLE" as s
 {
 static {
 MYFIELD.setGeneratorMode(SGeneratorMode.SSEQUENCE, "MY_SEQ");
 \}
 }

This works because the literal code is inserted after the field's declarations.

11.15 Quoting
The directive “quote” and “unquote” in a column's def. Default is to quote if
necessary. No quoting is necessary if name start with a letter and contains only letters,

16/29

digits, and the underscore character.

11.16 Using a custom type

Although seldom used, simpleorm enables you to create your own Sfield class. Jrsd
supports this. To use this feature the syntax “other(“MyCustomType”)” is used. The
generated source uses the type SfieldMyCustomType. Here is an example that uses a
“BigInteger” type :

First we declare the SfieldBigInteger class, with a constructor that cant take only two
values (this is what jrsd will generate).

package simpleorm.dataset;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.sql.ResultSet;
import simpleorm.utils.SException;
/**
 * Special implementation of SFieldBigInteger, to avoid rounding
errors
 * when dealing with ens indexes.
 * @author hk
 * (currently under development)
 */
public class SFieldBigInteger
extends SFieldScalar
{
 static final long serialVersionUID = 1L;
 private int precision = 0;
 private int scale = 0;

 public SFieldBigInteger(SRecordMeta meta, String columnName,
SFieldFlags... pvals)
 {
 this(meta, columnName, 38, 0, pvals);
 }

 /**
 * Note that precission and scale parameters only affect how the
tables are
 * created. The scale that is actually returned is up to JDBC. And
then you
 * are responsible for dealing with rounding issues.
 */
 public SFieldBigInteger(SRecordMeta meta, String columnName,
 int precission, int scale, SFieldFlags... pvals) {
 super(meta, columnName, pvals);
 this.precision = precission;
 this.scale = scale;
 }

17/29

 public int getPrecision() {
 return precision;
 }
 public int getScale() {
 return scale;
 }

 public Object queryFieldValue(ResultSet rs, int sqlIndex) throws
Exception {
 /**
 * CHANGED to add second parameter
 */
 BigDecimal bd = rs.getBigDecimal(sqlIndex);
 if (rs.wasNull()) // ie. last operation!
 return null;
 else {
 BigInteger res = bd.toBigInteger();
 return res;
 }
 }

 protected Object convertToDataSetFieldType(Object raw)
 throws Exception
 {
 if (raw instanceof BigDecimal)
 return ((BigDecimal) raw).toBigInteger();
 if (raw == null)
 return null;
 if (raw instanceof Number)
 return new BigInteger(raw.toString());
 // ## This will loose precission for longs, but Java does not
 // provide an easy way to convert longs to BigDecimals! There
is
 // certainly no Number.bigDecimalValue.
 if (raw instanceof String) {
 BigInteger val = new BigInteger(raw.toString());
 return val;
 }
 throw new SException.Data("Cannot convert " + raw + " to
BigInteger.");
 }

 /**
 * This is basically SQL 2, and fairly database
 * independent, we hope. Note that "BIGDECIMAL" for Oracle means a
text
 * field that can contain over 2K characters!
 */
 @Override
 public String defaultSqlDataType() {
 return "NUMERIC("
 + getPrecision()
 + "," + getScale()
 + ")";
 }

 public boolean isFKeyCompatible(SFieldScalar field) {
 if (!(field instanceof SFieldBigInteger))

18/29

 return false;
 SFieldBigInteger biField = (SFieldBigInteger) field;
 if (biField.getPrecision() != this.getPrecision()) return
false;
 if (biField.getScale() != this.getScale()) return false;
 return true;
 }

 @Override
 public
 int javaSqlType() { return java.sql.Types.NUMERIC; }

}

We can then declare the column of type « other », and use the sql we want for the
column :

 IXLO other("BigInteger") { IXLO NUMBER(38, 0) } : s;

The type BigInteger is not known by default, we must add an include statement right
after the jrsd preamble :

jrsd 2;

import "java.math.BigInteger";

Default names

When you omit some names, defaults are used. For example, writing
foo_bar integer : s(t);

Is the same as writing
 foo_bar integer : s.foo_bar(t.foo_bar);

This makes the code more readable and it is advised to keep the same names in all
objects to avoid bugs that are difficult to find.

11.17 Field lists
You can declare a field list, and declare in the jrsd file your fields they will be added
to this list. This can be useful to adress only a subset of some values.

11.18 Using LOBs

11.18.1 Why it is was difficult
Database fields usually have a fixed length, and are kept small. This is because their
values are stored in indexes, and in structures that are frequently re-allocated, when
the database gets reorganized. However there is a need to store bigger « values », like

19/29

binary data that represents a picture or a video, or a long text (like an entire xml
document). To store these big values, databases like Oracle, MySql, and others use
reserved areas, that are manipulated outside of the internal record structure. In the
record structure, there is a pointer to this area. A large area that contains characters is
called a CLOB (for Character Large OBject), and a large area that contains binary
data is called a BLOB (for Binary Large Object). These elements are not like regular
scalar values (numbers, strings, dates, …). Access to theses elements via JDBC is
tricky, because the API looks just like the API that is used to retrieve Strings,
Integers, etc. However, if you try to manipulate LOBs like usual scalar values, you
start to get errors and incomprehensible behavior.

Things get even more confusing when you look at the various docs available. If you
consult the Java API documentation, (cf. docs/guide/jdbc/blob.html), you don't get
every aspect of LOBs, especially not for Oracle. There is no code, for example, that
creates a new LOB. If you look at Oracle samples as supplied by Oracle for version 9,
(cf. advanced_jdbc_samples/LOBSampleReadme.html), you see that the creation of a
BLOB or CLOB occurs in SQL, not in the JDBC API, via the instruction
EMPTY_BLOB() (resp. EMPTY_CLOB()).So the part that creates the LOB is
database-dependent; which is not very much in the spirit of JDBC. Actually, you can
create a new BLOB indirectly, with JDBC, look at
org.hmn.jrsd.test.BlobTests2.testRegularBlobCreation()
for an example.

When you look at the various samples for Oracle, you see that reading / writing to a
LOB requires :

1) that you select and lock the row that contains the handle to the LOB, using the
FOR UPDATE clause

2) that you use blob.getBinaryStream(), resp. blob.setBinaryStream(), to
get a stream to read or to write data to/from the BLOB

This is rather complex (but it works). Jdbc3 supports writing bytes directly via
setBytes(), but this requires a (relatively) recent driver. And also if the Lobs you
manipulate are rather large, this can consume a lot of memory. And unfortunately, this
doesn't work directly in Simpleorm, because when you try to write bytes using
field.setBytes(), Simpleorm will call PreparedStatement.setObject(), not
PreparedStatement.setBytes(), and the database may complain that it needs a Blob
object, not a byte array (recent oracle 10 drivers handle the array correctly by
converting it automatically; see the test
org.hmn.jrsd.test.BlobTests3.testPsSetBytes()). So the “official” way is to
retrieve a Lob object and to manipulate it. To help you do this, jrsd2 has the methods
org.hmn.jrsd.rt.SormUtils.readFromBlob(Blob), and
org.hmn.jrsd.rt.SormUtils.writeToBlob(byte[], Blob). To select the Blob, you can use
the method
org.hmn.jrsd.rt.SormUtils.selectExtra(SSessionJdbc, SRecordInstance,
String, ResultSetColVisitable)
and the object
org.hmn.jrsd.rt.BlobCollectVisitor

20/29

to get access to the Blob. Ex :
 BlobCollectVisitor visitor = new BlobCollectVisitor();
 SormUtils.selectExtra(s, rec, "SOMEBLOB", visitor);
 Blob clb = visitor.getBlob();

See for an example :
org.hmn.jrsd.test.BlobTests3.testUpdateSelectExtra()
If you can use a recent jdbc driver (and most of the time, you can),
PreparedStatement.setBytes() and ResultSet.getBytes() will work, so using
SFieldBlob will work for the reading part, and make the code much simpler (in
Oracle this only works reliably if JDBC driver for Oracle 10, is used, as there were
bugs in the handling of ps.setBytes() in previous versions). For the writing part, we
will have to wait until Simpleorm calls setBytes instead of setObject.

11.18.2 How to do it (the simple way)
• The key is to use the most recent JDBC driver available. Be sure the driver

supports JDBC3. This was a problem a few years ago, but now it isn't.

• Declare the field as SUNQUERIED, ex :
static SFieldBlob SOMEBLOB =
 new SFieldBlob(meta, "SOMEBLOB", 500000, SfieldFlags.SUNQUERIED);

• Use the select mode SALL to select the record, this will read all fields even
the ones that are normally unqueried :

rec = s.findOrCreate(TEST_BLOB3.meta, SSelectMode.SALL, 7);
• Read the bytes in the field, just like a scalar value

• If you use Oracle 10, the commit will write back the bytes correctly

• To write the bytes differently (if update doesn't work), don't update the record,
but use the utility method SormUtils.writeToBlob(), after locking the row. Ex :

MYTABLE rec = s.find(MYTABLE.meta, SQueryMode.SFOR_UPDATE, 2);
SormUtils.writeToBlob(s, rec, "SOMEBLOB", theBytes);
s.flushAndPurge(rec);

• If your database is not Oracle, test the creation and the update, using small
LOBs AND large LOBs (like 1K and 1M), because some bugs may only
appear when the data is large, and this area seems less tested than others in
simpleorm.

• In 99% of the cases, using byte arrays is sufficient, but some testing should be
done.

• For more complex needs, see the paragraph above to select the Clob or the
Blob.

11.18.3 The other problem is CLOBs
Clobs hold characters, not bytes, just like String. 99% of the time, you will want to

21/29

store a string directly, there is no necessity to copy the data from a stream. Some
JDBC drivers (Oracle for example), support writing to the CLOB using
PreparedStatement.setString() (actually, even PreparedStatement.setObject(String[])
seems to work in Oracle, but I don't have seen this documented). So to use a CLOB,
declare it as SfieldClob2 (this class was added in jrsd2, it is not part of Simpleorm),
reading from the CLOB field will get the CLOB's handle, and read from it. However,
Simpleorm writes PreparedStatement values using setObject(), this will work with the
Oracle 10 driver, but may not work for others as the database sometimes expects
exactly a Clob object. There is a utility method that updates a column using
setString() explicitly, you can use that method to update the CLOB. This is
particularly useful to initialize the CLOB, it is much simpler than finding the specific
clause that creates an empty CLOB (check your database for details). You must
acquire a lock on the record before you modify a CLOB, so you should first retrieve
the row using the SFOR_UPDATE clause. Also most of the time you will not want to
read those big CLOB values everytime you select the rows, so the field will be
declared as SUNQUERIED, so to select it, SALL must also be used. Example
(simplified) from org.hmn.jrsd.test.ClobTests2.testSetAsString() :
 String randomContent = makeRandomString();
 SSessionJdbc s = SSessionJdbc.open(ds, "testSetAsString");
 s.begin();
 rec = s.find(TEST_CLOB2.meta, SQueryMode.SFOR_UPDATE, 7);
 SormUtils.updateColumnAsString(
 s, rec, "SOMECLOB", randomContent);
 s.commit();
 //re-read
 s.begin();
 rec = s.findOrCreate(
 TEST_CLOB2.meta, SSelectMode.SALL, SQueryMode.SFOR_UPDATE, 7);
 readContents = rec.getString(TEST_CLOB2.SOMECLOB);
 s.commit();

11.18.4 How to declare in jrsd2
• The current SfieldBlob implementation (rev 845 of Simpleorm) does not

return a Blob actually, but rather the bytes directly. For this reason, jrsd2
would produce incorrect accessors, so this field must be declared differently.

• Declare as a BLOB field, but declare the returned type as bytes (which will get
replaced by “byte[]”); also use a directive to set the Simpleorm
SUNQUERIED flag :

SOMEBLOB BLOB : s Blob::bytes #SUNQUERIED;

• If you don't use an Oracle 10 driver, don't use use the setSOMEBLOB()
generated accessor, as it takes a byte[] argument, but jdbc will usually expect a
Blob, so this will not work. Use SormUtils.writeToBlob() instead, as
explained above. Ex :

MYTABLE rec = s.find(MYTABLE.meta, SQueryMode.SFOR_UPDATE, 2);
SormUtils.writeToBlob(s, rec, "SOMEBLOB", theBytes);
s.flushAndPurge(rec);

22/29

• For CLOBs the situation is different, as Simpleorm does not currently propose
a SfieldClob. You can use SfieldClob2, supplied with jrsd2, but if you should
declare the accessors yourself, because jrsd doesn't know how to generate
them correctly, and if you don't use an Oracle 10 driver, declare only a getter.
To set the value of the CLOB, see the chapter about CLOBs. Ex of declaration
:

 SOME_LONG other("Clob2")
 {SOME_LONG CLOB} : s #noaccessors #SUNQUERIED;
...
 public String getSOME_LONG() { return getString(SOME_LONG); }

 public void setSOME_LONG(String str) { setString(SOME_LONG, str); }

11.19 Utilities in jrsd2 package

11.19.1 simpleorm.utils.SLogLog4jBridge

11.19.1.1 Introduction
(introduced in jrsd 2.5) This utility serves to control the logging that is output to a
log4j Logger.

Every time simpleorm needs a logger, it instanciates one using Slog.newSLog() which
uses the slogClass to make that instantiation. SlogLog4jBridge, when you call
useSLogLog4Bridge() puts its class in the slogClass field, so that instances of
SlogLog4jBridge are used as loggers.

The configuration of the logger is stored in another object, the Configuration object. It
controls, for each Slog logging operation, what log4j level is used to emit to log4j. It
has as a default the most usual setting, but everything can be overridden. When a
SlogLog4jBridge is created, its configuration is the default configuration. This default
configuration is a singleton, and changing it changes the behavior of all objects that
use it.

You can create you own Configuration objects, and use them to configure you logger.
When is this needed ? Well, for each new connection, a new Slog instance is created
using Slog.newSLog(). To change the settings for the new connection only, you can
tell that the new connection's logger has to use the given configuration, by calling the
configuration's method applyTo(). Example :
Configuration myConf = new Configuration();
// set the wanted levels in myConf
...
SsessionJdbc s = SsessionJdbc.open(ds, “myConn”);
myConf.applyTo(s);

The same conf object can be used for several configurations.

23/29

11.19.1.2 Simple configuration
To use the SlogLog4jBridge you just have to execute the static method
useSLogLog4jBridge() as soon as possible (in the main() method, for example). After
that, you can change a few levels in the default configuration. These levels will be
used in all places that use the logger. Ex :
 SlogLog4jBridge.useSLogLog4jBridge();

You can change levels at the default configuration, this will change the level
everywhere. Ex :
 SLogLog4jBridge.getDefaultConfiguration()
 .setLevel(SLogLog4jBridge.LN_CONNECTIONS, "info");

11.19.1.3 More elaborate configuration
After having used the simple configuration above, we will show how to configure
loggers for each session. Here in the following example MyClass has a factory
method, that produces connections, whose logger has a few custom levels.
public MyClass {
 DataSource ds;
 Configuration mySpecialConf = new Configuration();

 public MyClass(DataSource ds) {
 this.ds = ds;
 //the special conf is that queries are emitted with the “info”
 //level
 mySpecialConf.setLevel("queries", "info");
 }

 /**
 * Make a connection, the connection will use a logger that
 * has our special configuration
 */
 public SsessionJdbc makeConnection(DataSource ds, String name)
 {
 SsessionJdbc s = SsessionJdbc.open(ds, name);
 mySpecialConf.applyTo(s);
 return s;
 }
}

11.19.1.4 The log4j logger used
The default logger used in a new Configuration instance is the logger attached to
SlogLog4jBridge. The “lg” field is public, so you can change this very easily. From
the SlogLog4jBridge instance you can also use setLogger() to change the logger in the
underlying configuration instance.

11.19.1.5 Deriving Configuration objects
The configuration instances are shared between object that thy apply to. If you change
one level, this change will apply to all objects that use that conf. If you just want to

24/29

change some levels for a few special connections, you can clone an existing
Configuration object and change the levels you want, Configuration implements
Cloneable.

11.20 DbOps
<TODO>

11.21 SQL expression objects
This is somewhat redundant with simpleorm; There is a
org.hmn.jrsd.rt.WhereHelper class that help to build a correct “where” clause,
when some parameters can be null.The expression must be entered as a combination
of SqlExpr derived objects (AndExpr, OrExpr, BinOpExpr, ListExpr, LiteralExpr).

See org.hmn.jrsd.test.SqlExprTests.testAndExpr() for an example.

11.22 FiniteString class
A utility class to control the length of the string from end to end, truncating it if
necessary. This is to avoid errors due to excessive length of strings in unimportant
columns. This class should not be used for more important columns (strings that serve
as ids, for example) where silent truncation is not acceptable.

11.23 JdbcResults
org.hmn.jrsd.rt.rows.JdbcResults has nothing to do with simpleorm. In fact I used it
well before simpleorm. It is useful to get the result of a query in a “compact” form for
serialization. This is very simple, but is somehow redundant with simpleorm. The
rows, columns, cells are accessible as simple collections and with javabean semantics,
so with libraries that requires this (like stringtemplate) this is more convenient than
simpleorm.

11.24 Simpleorm extra utils, Jdbc utils
Jrsd proposes several small methods, rather trivial, that I use frequently, so they don't
need to be recoded every time. These methods are in the SormUtils and JrsdRtUtils
class.

11.25 Integration with ant
You can define a task in ant, that will do all the precompilation.

First, declare a classpath that references the 4 jars that are necessary :
 <path id="jrsd_cp">
 <pathelement location="${log4j.jar.path}" />
 <pathelement location="${jrsd.jar.path}" />
 <pathelement location="${antlr.jar.path}" />
 <pathelement location="${st.jar.path}" />
 </path>

25/29

Then, use that classpath to declare a jrsd task :
 <!-- declare the jrsd task -->
 <taskdef name="jrsd" classname="org.hmn.jrsd.JrsdTask"
 classpathref="jrsd_cp" />

You can now use the jrsd task to precompile all your jrsd to sql files and java classes :
 <jrsd srcdir="${src.dir}" sqldir="${sql.dir}">
 <fileset dir="${jrsd.dir}">
 <include name="**/*.jrsd"/>
 </fileset>
 </jrsd>

With the distribution comes an example of a typical ant build file. See “References”
for more detailed information.

11.26 References

11.26.1 Command line switches
-srcroot <path_to_dir> : root location of generated java source files, Mandatory.

-sqlroot <path_to_dir> : root location of generated sql files, Mandatory.

-xmlroot <dir> : base dir for the generated xml files. Optional. Defaults to “.” (the
current user directory). Default is to exit with an error if the output file already exists
and is older than 1 day.

-log <path_to_log_file>

-fileext : file extention of the generated sql files. Default is “sql”

-overwrite : overwrite SQL files even if they are older than one day (use with caution,
see above)

-forcefieldsuc : force field names to uppercase

-forcefieldslc : force field names to lowercase

-genoracomments : generate oracle comment-creation ddl instructions for column and
table comments, in Oracle syntax.

-debug : turn on output of debugging messages

-help : show a help screen, print help and exit

-encoding <encodingname> : force the encoding. This is recommended if you include
the generated SQL into jars to load them as resource, the recommended encoding is
then “UTF-8”. The default is the platform's default encoding, see the Charset class for
more information.

-nojava : turn off java code generation

26/29

-nosql : turn off sql code generation

-debug : switch on debug mode

-emitxml : enables the emission of xml files built from the table sql specs.

11.26.2 Ant task attributes
• sqldir : root path of generated SQL files

• srcdir : root path of generated java source files

• xmldir : root path of generated xml files. Defaults to “.”

• genoracomments : generate oracle SQL instructions to declare comments for
tables and columns.

• overwrite : allow overwriting of sql files of same version and different sql
checksum, even if they are more than 1 day old.

• debug : enable debugging

• fileext : file extension of generated sql files (defaults to .sql)

• nojava : disable generation of java source files

• nosql : disable generation of sql files

• forcefieldsuc : force the case of the generated fields to uppercase

• forcefieldslc : force the case of the generated fields to lowercase

An ant fileset is used to specify the jrsd files that must be processed.

Example of ant task :
<jrsd srcdir="src" sqldir="src/sql" xmldir="src/xml" emitxml="true">
 <fileset dir="jrsd-src"/>
</jrsd>
x

11.26.3 Supported types for SQL
char(n), varchar(n), bigdecimal, integer, int, primitive_long, long, primitive_double,
double, date, timestamp, time, blob, clob, blob(n), clob(n), primitive_booleanbit,
booleanbit, bytes(n), number, other(str), primitive_booleanchar(t,f), booleanchar(t,f)

11.26.4 Supported types for simpleorm
int, integer, long, primitive_long, double, primitive_double, boolean,
primitive_boolean, date, bigdecimal, ref <field>

27/29

Table of contents
1 (Long) Introduction...1
2 Why use jrsd + simpleorm ?..2

2.1 History of jrsd..3
3 For the impatient...3
4 A simple .jrsd file..4
5 The generated .java and .sql files..4
6 Format of a .jrsd file..6

6.1 Preamble..6
6.2 Statements and semicolons..6
6.3 Sql / Java duality..6
6.4 Aliases...7
6.5 Default names..7
6.6 Explicit names...7
6.7 Table declaration...7
6.8 Column declaration..8

6.8.1 Primary key(s)..8
6.8.2 declaring references...8

6.9 ”transport” objects...8
6.10 Comments..9

7 The generated files..9
7.1 SQL files..9
7.2 java files...10
7.3 Xml files..10

8 Installation...10
9 Usage from the command line...11
10 The .jrsd types...11
11 More advanced .jrsd..11

11.1 ANTLR grammar..11
11.2 Quoting of names...11
11.3 Parameterized types : boolean(...)...12
11.4 Extends : Using the generated class as a superclass..12
11.5 Extends abstract...12
11.6 Explicit simpleorm field type declaration...12
11.7 Double colon (“::”) usage..12
11.8 field prefixes..12
11.9 declaring a reference..12
11.10 Adding literal code for sql...14
11.11 Adding literal code for java...14
11.12 Column types and simpleorm field types..14
11.13 Using directives...15
11.14 Declaring key generators...16
11.15 Quoting..16
11.16 Using a custom type..17
11.17 Field lists..19

28/29

11.18 Using LOBs...19
11.18.1 Why it is was difficult..19
11.18.2 How to do it (the simple way)..21
11.18.3 The other problem is CLOBs...21
11.18.4 How to declare in jrsd2..22

11.19 Utilities in jrsd2 package...23
11.19.1 simpleorm.utils.SLogLog4jBridge..23

11.19.1.1 Introduction..23
11.19.1.2 Simple configuration..24
11.19.1.3 More elaborate configuration...24
11.19.1.4 The log4j logger used...24
11.19.1.5 Deriving Configuration objects..24

11.20 DbOps..25
11.21 SQL expression objects...25
11.22 FiniteString class...25
11.23 JdbcResults..25
11.24 Simpleorm extra utils, Jdbc utils...25
11.25 Integration with ant..25
11.26 References...26

11.26.1 Command line switches...26
11.26.2 Ant task attributes..27
11.26.3 Supported types for SQL...27
11.26.4 Supported types for simpleorm..27

12 History...29

12 History
2011-09-02 hk now documenting v.2.8. Xml emission. Updated command line and ant descriptions
2010-12-27 hk more examples and explanations. Explanations on generators and literal code
2010-08-25 hk added field prefix directive
2010-08-02 hk more explanations on the ant task
2010-08-02 hk now documenting v. 2.5
2010-02-22 hk explanations about LOBs
2009-06-11 hk clarifications about references

29/29

	1 (Long) Introduction
	2 Why use jrsd + simpleorm ?
	2.1 History of jrsd

	3 For the impatient
	4 A simple .jrsd file
	5 The generated .java and .sql files
	6 Format of a .jrsd file
	6.1 Preamble
	6.2 Statements and semicolons
	6.3 Sql / Java duality
	6.4 Aliases
	6.5 Default names
	6.6 Explicit names
	6.7 Table declaration
	6.8 Column declaration
	6.8.1 Primary key(s)
	6.8.2 declaring references

	6.9 ”transport” objects
	6.10 Comments

	7 The generated files
	7.1 SQL files
	7.2 java files
	7.3 Xml files

	8 Installation
	9 Usage from the command line
	10 The .jrsd types
	11 More advanced .jrsd
	11.1 ANTLR grammar
	11.2 Quoting of names
	11.3 Parameterized types : boolean(...)
	11.4 Extends : Using the generated class as a superclass
	11.5 Extends abstract
	11.6 Explicit simpleorm field type declaration
	11.7 Double colon (“::”) usage
	11.8 field prefixes
	11.9 declaring a reference
	11.10 Adding literal code for sql
	11.11 Adding literal code for java
	11.12 Column types and simpleorm field types
	11.13 Using directives
	11.14 Declaring key generators
	11.15 Quoting
	11.16 Using a custom type
	11.17 Field lists
	11.18 Using LOBs
	11.18.1 Why it is was difficult
	11.18.2 How to do it (the simple way)
	11.18.3 The other problem is CLOBs
	11.18.4 How to declare in jrsd2

	11.19 Utilities in jrsd2 package
	11.19.1 simpleorm.utils.SLogLog4jBridge
	11.19.1.1 Introduction
	11.19.1.2 Simple configuration
	11.19.1.3 More elaborate configuration
	11.19.1.4 The log4j logger used
	11.19.1.5 Deriving Configuration objects

	11.20 DbOps
	11.21 SQL expression objects
	11.22 FiniteString class
	11.23 JdbcResults
	11.24 Simpleorm extra utils, Jdbc utils
	11.25 Integration with ant
	11.26 References
	11.26.1 Command line switches
	11.26.2 Ant task attributes
	11.26.3 Supported types for SQL
	11.26.4 Supported types for simpleorm

	12 History

